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Abstract The ground state entropy of the 2D Ising spin glass with +1 and −1 bonds is
studied for L × M square lattices with L ≤ M and p = 0.5, where p is the fraction of
negative bonds, using periodic and/or antiperiodic boundary conditions. From this we obtain
the domain wall entropy as a function of L and M . It is found that for domain walls which
run in the short, L direction, there are finite-size scaling functions which depend on the ratio
M/LdS , where dS = 1.22 ± 0.01. When M is larger than L, very different scaling forms are
found for odd L and even L. For the zero-energy domain walls, which occur when L is even,
the probability distribution of domain wall entropy becomes highly singular, and apparently
multifractal, as M/LdS becomes large.

Keywords 2D Ising spin glass · Ground state entropy · Domain wall entropy · Aspect-ratio
scaling

1 Introduction

Recently, a series of unexpected results and conjectures [1–4] has provided a new perspec-
tive on the nature of the two-dimensional (2D) Ising spin glass. These results indicate that
for the case in which the bonds are chosen randomly to have values of ±J conformal invari-
ance [2] and gauge invariance [5, 6] combine to create a set of remarkable properties. In this
work we will present more such remarkable properties of the model, and find a numerical
result which seems to rule out some of these proposals.

The Hamiltonian of the Edwards-Anderson spin-glass model [7] for Ising spins is

H = −
∑

〈ij 〉
Jijσiσj , (1)

where each spin σi is a dynamical variable which has two allowed states, +1 and −1. The
〈ij 〉 indicates a sum over nearest neighbors on a simple square lattice of size L × M . We

R. Fisch (�)
382 Willowbrook Dr., North Brunswick, NJ 08902, USA
e-mail: ron@princeton.edu



562 J Stat Phys (2008) 130: 561–569

choose each bond Jij to be an independent identically distributed quenched random variable,
with the probability distribution

P (Jij ) = pδ(Jij + 1) + (1 − p)δ(Jij − 1), (2)

so that we actually set J = 1, as usual. Thus p is these concentration of antiferromagnetic
bonds, and (1 − p) is the concentration of ferromagnetic bonds. In this work we will study
the case p = 0.5, for which the average of P (Jij ) is zero.

In two dimensions (2D), the spin-glass phase is not stable at finite temperature. Because
of this, it is necessary to treat cases with continuous distributions of energies (CDE) and
cases with quantized distributions of energies (QDE) separately [8, 9].

Amoruso, Hartmann, Hastings and Moore [2] have proposed that in 2D there is a relation

dS = 1 + 3

4(3 + θE)
, (3)

where dS is the fractal dimension of domain walls, and θE is the exponent which character-
izes the scaling of the domain wall energy, Edw , with size. For the CDE case, the existing
numerical estimates [2, 10] of dS and θE satisfy (3).

For the QDE case, it is known that θE = 0 [9, 11]. Using (3) then gives dS = 1.25. The
derivation of (3) assumes that the critical exponent η for the scaling of spin-glass correlations
is equal to zero, however. This appears to fail in the QDE case [12–14].

As pointed out by Wang, Harrington and Preskill [15], domain walls of zero energy which
cross the entire sample play a special role when the boundary conditions are periodic and/or
antiperiodic in both directions and the energy is quantized. In the work presented here, we
will find that the properties of these Edw = 0 domain walls are very special indeed.

2 Numerical Results for Ground State Entropy

We will analyze data for the domain wall entropy, Sdw , for the ground states (GS) of 2D
Ising spin glasses obtained using a slightly modified version of the computer program of
Galluccio, Loebl and Vondrák [16, 17], which is based on the Pfaffian method. The Pfaf-
fians are calculated using a fast exact integer arithmetic procedure, coded in C++. Thus,
there is no roundoff error in the calculation until the double precision logarithm is taken to
obtain Sdw . This extended precision is essential, in order to obtain meaningful results for
entropy differences for large values of L and M . An earlier version of this calculation [3]
was limited to L × L lattices.

We define the GS entropy to be the natural logarithm of the number of ground states. For
each sample the GS energy and GS entropy were calculated for the four combinations of
periodic (P) and antiperiodic (A) toroidal boundary conditions along each of the two axes
of the square lattice. We will refer to these as PP, PA, AP and AA. The computer program
treats the two lattice directions on an equal footing. Therefore we assume, without loss of
generality, that L ≤ M .

For each lattice size L × M which was studied, 500 samples of the random bonds were
used to calculate statistical averages for quantities of interest. In Fig. 1 we show the average
GS entropy [S0(L,M)] per spin, where the brackets [ · ] indicate an average over random
samples of the Jij , for a large number of sizes L × M . The values of M shown here are
chosen to be 2n + 1, where n is 0, 1, 2, . . . . Thus for these lattices L and M are either both
odd or both even. We see that the behaviors for odd L and even L are distinct. When the
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Fig. 1 (Color online) Average
GS entropy per spin, [S0]/LM

vs. 1/LM , for L × M lattices.
The error bars indicate one
standard deviation statistical
errors

aspect ratio, R = M/L becomes large, [S0(L,M)] for the lattices with odd L approaches
S0(∞,∞) from below, while for even L it approaches this limit from above. R functions as
a control parameter which takes us from the L × L systems, for which [S0] falls on a single
curve for both odd L and even L [3], to the L × ∞ systems, for which [S0] has distinct
behaviors for odd L and even L.

We define domain walls for the spin glass as it was done in the seminal work of McMil-
lan [18]. We look at differences between two samples with the same set of bonds, and the
same boundary conditions in one direction, but different boundary conditions in the other di-
rection. Thus, for each set of bonds we obtain domain wall data from the four pairs (PP, PA),
(PP, AP), (AA, PA) and (AA, AP). For each size L × M we have 1000 data points for the
short (horizontal) direction, and another 1000 data points for the long (vertical) direction.

The domain-wall renormalization group [19] is based on the idea that we are studying an
effective coupling constant which is changing with L and M . For the CDE case [20] we can
use the domain wall energy, Edw , which is defined to be the change in the GS energy when
the boundary condition is changed along one direction from P to A (or vice versa), with the
boundary condition in the other direction remaining fixed, as the coupling constant. For the
QDE case, what we need to do is a slight generalization of this idea. We should think of the
coupling constant as the free energy at some infinitesimal temperature. When we do this,
the entropy contributes to the coupling constant.

The domain wall entropy, Sdw , is defined [3] to be the change in S0 when the boundary
condition is changed along one direction from P to A (or vice versa), with the boundary
condition in the other direction remaining fixed. As long as Edw > 0, the two boundary
conditions which we are comparing are not on an equal footing. At a fixed aspect ratio,
[Sdw] is expected to increase as a positive power of L for any Edw > 0. Therefore, these
coupling constants must eventually, at large enough L, be controlled by [Sdw] for any T > 0.
Of course, the value of L which is needed for this to happen depends in T .

As Wang, Harrington and Preskill [15] express the situation, an Edw > 0 domain wall
does not destroy the topological long-range order. However, in the Edw = 0 case the two
boundary conditions are on an equal footing, and the topological order is destroyed. The
probability distribution of Sdw for the cases where Edw = 0 should be symmetric about 0,
and our statistics are consistent with this. Therefore the Edw = 0 class of domain walls can
be expected to behave in a special way.
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It is important to realize that the meaning of a domain wall is very different when S0

is positive, as in the model we study here, as compared to the typical case of a doubly
degenerate ground state. In the case of two-fold degeneracy one can identify a line of bonds
which forms a boundary between regions of spins belonging to the two different ground
states. It is not possible, in general, to do that when there are many ground states. Despite
this, we continue to use the term “domain wall”.

3 Sdw for Even L

When L is even, the energy difference, Edw , for any pair of GS for which the boundary
conditions are changed in the horizontal direction, with the boundary conditions in the ver-
tical direction remaining fixed, must be a multiple of 4. When L is odd and the boundary
conditions are changed in this way, Edw is 4n + 2, where n is an integer [3, 8]. Equivalent
statements are true for odd and even M , with the roles of the horizontal and vertical bound-
ary conditions interchanged. The sign of Edw for a McMillan pair is essentially arbitrary for
p = 1/2. Thus we can, without loss of generality, choose all of the domain-wall energies to
be non-negative.

The probability distribution for Edw is a strong function of the aspect ratio of the lattice.
When L is even the probability that Edw �= 0 goes exponentially to 0, as a function of R [21].
Similarly when L is odd we find that the probability that Edw �= 2 goes exponentially to zero
as R increases. However, the difference between even L and odd L for large R turns out to
be profound.

For the Edw = 0 case it is convenient to study |Sdw|, since the distribution is symmetric
about zero. In Fig. 2 we display a scaling function for the behavior of [|Sdw|] versus M/LdS ,
for domain walls which run in the (L) direction, with

dS = 1.22 ± 0.01, (4)

where the error estimate is a one-standard-deviation statistical error. This estimate of dS is
obtained from comparing the behavior of the L = 8 data and the L = 12 data as a function
of M , and requiring that the slopes in Fig. 2 should be identical. Thus we find that the true

Fig. 2 (Color online) Finite-size
scaling function for
[|Sdw(L,M)|] vs. M/L1.22 for
Edw = 0 domain walls which run
in the L direction. The y-axis is
scaled logarithmically
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value of dS is probably less than 1.25, and the possibility that dS is the same for the QDE
case as the CDE case [1], for which dS is approximately 1.27 [22], appears to be ruled out.

The naive choice of scaling variable, R = M/L, fails to produce a satisfactory data col-
lapse for data with differing values of L. LdS is the effective length of a domain wall for
this model. It is intuitively reasonable that the domain wall entropy should be proportional
to the length of the domain wall, rather than L. Although such data are not displayed here,
we have found that when M > L the results for odd M with even L also fall on the scaling
curve shown in Fig. 2.

Recently, Melchert and Hartmann [23] have attempted to calculate the scaling exponent
for the length of domain walls for this model directly. They were unable to determine a
precise value, however, due to the high ground state degeneracy and the fact that their al-
gorithm does not select a ground state randomly. Similar results for hexagonal lattices have
been given by Weigel and Johnston [24].

It is remarkable that [|Sdw|] is falling exponentially as a function of the variable M/LdS .
There is no L-dependent scale factor for the y-axis. This is the total |Sdw| for the entire
L×M lattice. This behavior indicates that the zero-energy domain walls which encircle the
lattice in the short direction must become strongly correlated as R becomes large. Because
the Hamiltonian does not contain any explicit long-range interactions, the mechanism by
which this occurs is not trivial to understand.

As M/LdS increases, the distribution of [|Sdw|] becomes increasingly singular. The last
point shown in Fig. 2 is above the trend because it is dominated by a single data point. To
make this issue concrete, in Fig. 3 we show the histogram of the probability distribution for
this point, |Sdw(6,66)|. The domination of the mean of this distribution by the point at the far
right of the histogram is obvious by inspection. To demonstrate that this is typical behavior,
we show the corresponding histogram for |Sdw(12,132)|, which is not off the trend line,
in Fig. 4.

As the reader may have already noticed, no statistical error bars are given for the data
points in Fig. 2. In order to give a meaningful estimate of such statistical errors for these
probability distributions, we would need to know what the analytical forms of the probability
distributions are. We do not have this information. The statistical error estimate for dS comes
from fitting the observed fluctuations of the data points from the trend line. For this we do
not need to know the statistical errors of the individual data points.

Fig. 3 Histogram of the
probability distribution of
[|Sdw(6,66)|] for Edw = 0
domain walls which run in the L

direction. The y-axis is scaled
logarithmically
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Fig. 4 Histogram of the
probability distribution of
[|Sdw(12,132)|] for Edw = 0
domain walls which run in the L

direction. The y-axis is scaled
logarithmically

Fig. 5 (Color online) Finite-size
scaling function for
[√|Sdw(L,M)|]2 vs. M/L1.22

for Edw = 0 domain walls which
run in the L direction. The y-axis
is scaled logarithmically

Because the probability distributions of |Sdw| become so singular in the limit of large R,
they appear to be multifractal [25]. One way of seeing this is to calculate the fractional
moments

|Sdw(L,M)|q = [|Sdw(L,M)|1/q]q , (5)

for q = 1,2,3, . . . when R > 1 for the Edw = 0 domain walls which run in the L direc-
tion. If |Sdw| was controlled by a single length scale, the slopes of the scaling functions
for |Sdw(L,M)|q , analogous to the q = 1 case shown in Fig. 2, would be identical (within
statistical errors). When one does this calculation, however, one finds that the rate at which
|Sdw(L,M)|q decays exponentially to zero as M/LdS increases is an increasing function
of q . The results for q = 2 are shown in Fig. 5. It is clear that the data points are falling
faster as M/L1.22 increases for q = 2 than they do for q = 1. (Note that the scales on the
axes of Fig. 5 are different from those of Fig. 2.) This trend continues for larger values of q .

The probability distributions for |Sdw| of Edw = 0 domain walls are thus inconsistent with
any single-length scaling hypothesis. The author believes that this behavior arises from the
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fact that the eigenvectors of the susceptibility matrix must be Anderson-localized in 2D [26].
Multifractal behavior is a natural result of disorder-induced localization [25].

In an earlier work [3], the author calculated the finite-size scaling behavior of |Sdw| for
Edw = 0 domain walls on L × L square lattices. It was found there that the exponent θS for
the scaling of the width of the probability distributions for |Sdw| depends on Edw = 0. For
Edw = 0 domain walls

θS(Edw = 0) = 0.500 ± 0.020. (6)

According to the droplet model, one expects dS = 2θS [27]. The value of dS which we have
found here is clearly inconsistent with this relation for Edw = 0. The reason for this is the
special symmetry of the Edw = 0 domain walls, as discussed in the earlier work [3].

4 Sdw for Odd L

For odd L with the boundary conditions we are using, Edw cannot be zero for domain walls
which run in the L direction. When Edw is not zero, the relative signs of Edw and Sdw are not
arbitrary. Having chosen Edw to be positive, we then find that Sdw is also usually positive [3].
In Fig. 6 we show the finite-size scaling of [Sdw(L,M)] for the Edw = 2 domain walls which
run in the L direction. In order to make the data for different values of L fall on a common
curve, it is necessary to include a y-axis scale factor of L−1/2. The scaling variable again
appears to be M/LdS , with the same value of dS as before, although our uncertainty in the
value of dS is larger for odd L. The behavior seems to be a power-law increase, with an
slope close to 0.30. The contrast of this behavior with the exponential decrease which we
found for the Edw = 0 walls could hardly be greater.

In Fig. 7 we show the finite-size scaling behavior for the widths of the same Edw = 2
Sdw(L,M) distributions, as parameterized by their standard deviations. The y-axis scale
factor for data collapse appears to be L−2/3 in this case. The behavior again appears to be
a power-law in M/LdS . The slope in this case is approximately −0.30. Thus the widths of
these Sdw(L,M) distributions should eventually become small compared to their average
values as R increases.

Fig. 6 (Color online) Finite-size
scaling function for
[Sdw(L,M)]L−0.5 vs. M/L1.22

for Edw = 2 domain walls which
run in the L direction, log-log
plot
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Fig. 7 (Color online) Finite-size
scaling function for the standard
deviation,
sd(Sdw(L,M))L−0.67 vs.
M/L1.22 for Edw = 2 domain
walls which run in the L

direction, log-log plot

For domain walls that run in the long, M direction, the probability that Edw = 0 goes
to zero as R → ∞ [28]. We do not expect any anomalous behavior for the “long” domain
walls. All of the results found here are consistent with the conclusion [3] that in this model
there seem to be two distinct classes of domain walls, the Edw = 0 domain walls and the
Edw > 0 domain walls.

The alert reader has noticed that the sizes of the lattices for which we have data when L

is odd are more limited than in the even L case. This is because the Vondrák code runs about
a factor of four faster if both L and M are even, due to symmetry properties of the Pfaffians.

5 Summary

We have studied the statistics of domain walls for ground states of the 2D Ising spin glass
with +1 and −1 bonds for L × M square lattices with p = 0.5, where p is the fraction
of negative bonds, using periodic and/or antiperiodic boundary conditions, for both even
and odd L and M , where L ≤ M . The probability distributions of domain wall entropy,
Sdw(L,M), are found to depend strongly on Edw , and therefore on whether L is odd or
even. Finite-size scaling forms are found which are functions of the variable M/LdS , where
dS = 1.22 ± 0.01. When the aspect ratio becomes large, the distribution of Sdw for zero-
energy domain walls which encircle the lattice in the short direction becomes multifractal.
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